Results: 323
Albert Poater
Michael Acceptors Tuned by the Pivotal Aromaticity of Histidine to Block COVID-19 Activity
J. Phys. Chem. Lett., 2020, 11, 6262-6265
DOI: 10.1021/acs.jpclett.0c01828Keywords: Aromaticity, Chemical bonding, Computational chemistry, Predictive Chemistry, Reaction mechanisms
Ahad Hanifpour, Naeimeh Bahri-Laleh, Mehdi Nekoomanesh-Haghighi, Albert Poater
Group IV diamine bis(phenolate) catalysts for 1-decene oligomerization
Mol. Catal., 2020, 493, 111047
DOI: 10.1016/j.mcat.2020.111047Keywords: Catalysis, Chemical bonding, Computational chemistry, Organometallics, Reaction mechanisms
Martí Gimferrer, Gerard Comas-Vilà, Pedro Salvador
Can We Safely Obtain Formal Oxidation States from Centroids of Localized Orbitals?
Molecules, 2020, 25, 234-
DOI: 10.3390/molecules25010234Keywords: Chemical bonding, Computational chemistry, Method development, Real-space analysis
Mantas Liutkus, Alicia López-Andarias, SaraH. Mejías, Javier López-Andarias, David Gil-Carton, Ferran Feixas, Sílvia Osuna, Wakana Matsuda, Tsuneaki Sakurai, Shu Seki, Carmen Atienza, Nazario Martín, Aitziber L. Cortajarena
Protein-directed crystalline 2D fullerene assemblies
Nanoscale, 2020, 12, 3614-3622
DOI: 10.1039/C9NR07083DKeywords: Computational chemistry, Enzyme design, Fullerenes, Supramolecular chemistry
Marco Bortoli, Matteo Bruschi, Marcel Swart, Laura Orian
Sequential oxidations of phenylchalcogenides by H2O2: insights in the redox behavior of selenium from a DFT analysis
New J. Chem., 2020, 44, 6724-6731
DOI: 10.1039/C9NJ06449DKeywords: Catalysis, Computational chemistry, Oxidation
Jun Wang, Baswanth Oruganti, Bo Durbeej
Unidirectional Rotary Motion in Isotopically Chiral Molecular Motors: A Computational Analysis
Org. Lett., 2020, 22, 7113-7117
DOI: 10.1021/acs.orglett.0c02436Keywords: Computational chemistry, Excited states, Photochemistry
Pau Besalú-Sala, Sebastian P. Sitkiewicz, Pedro Salvador, Eduard Matito, Josep M. Luis
A new tuned range-separated density functional for the accurate calculation of second hyperpolarizabilities
Phys. Chem. Chem. Phys., 2020, 22, 11871-11880
DOI: 10.1039/D0CP01291BKeywords: Computational chemistry, Density Functional Theory, Method development, Nonlinear optical properties, Spectroscopy
Alexander A. Voityuk, Sergei F. Vyboishchikov
Fast and accurate calculation of hydration energies of molecules and ions
Phys. Chem. Chem. Phys., 2020, 22, 14591-14598
DOI: 10.1039/d0cp02667kKeywords: Computational chemistry, Density Functional Theory, Method development
Iker Lamas, Raúl Montero, Virginia Martínez-Martínez, Asier Longarte, Lluís Blancafort
An nπ* gated decay mediates excited-state lifetimes of isolated azaindoles
Phys. Chem. Chem. Phys., 2020, 22, 18639-18645
DOI: 10.1039/D0CP02635BKeywords: Computational chemistry, Excited states, Photochemistry, Reaction mechanisms, Spectroscopy
Miroslav Medved’, Alex Iglesias-Reguant, Heribert Reis, Robert W. Góra, Josep M. Luis, Robert Zaleśny
Partitioning of interaction-induced nonlinear optical properties of molecular complexes. II. Halogen-bonded systems
Phys. Chem. Chem. Phys. , 2020, 22, 4225-4234
DOI: 10.1039/c9cp06620aKeywords: Ab initio theory, Computational chemistry, Method development, Nonlinear optical properties, Spectroscopy