Results: 11
Yue Fu, Heyu Chen, Wenzhen Fu, Marc Garcia-Borràs, Yang Yang, Peng Liu
Engineered P450 Atom-Transfer Radical Cyclases are Bifunctional Biocatalysts: Reaction Mechanism and Origin of Enantioselectivity
J. Am. Chem. Soc., 2022, 144, 13344-13355
DOI: 10.1021/jacs.2c04937Keywords: Catalysis, Computational chemistry, Confined space, Enzyme design, Metalloproteins
Jordi Soler, Sebastian Gergel, Cindy Klaus, StephanC. Hammer, Marc Garcia-Borràs
Enzymatic Control over Reactive Intermediates Enables Direct Oxidation of Alkenes to Carbonyls by a P450 Iron-Oxo Species
J. Am. Chem. Soc., 2022, 144, 15954-15968
DOI: 10.1021/jacs.2c02567Keywords: Catalysis, Computational chemistry, Confined space, Enzyme design, Metalloproteins
Zhen Liu, Zi-Yang Qin, Ledong Zhu, Soumitra V. Athavale, Arkajyoti Sengupta, Zhi-Jun Jia, Marc Garcia-Borràs, K.N. Houk, FrancesH. Arnold
An Enzymatic Platform for Primary Amination of 1-Aryl-2-alkyl Alkynes
J. Am. Chem. Soc., 2022, 144, 80-85
DOI: 10.1021/jacs.1c11340Keywords: Enzyme design, Metalloproteins
Jinyan Rui, Qun Zhao, AnthonyJ. Huls, Jordi Soler, JaredC. Paris, Zhenhong Chen, Viktor Reshetnikov, Yunfang Yang, Yisong Guo, Marc Garcia-Borràs, Xiongyi Huang
Directed evolution of nonheme iron enzymes to access abiological radical-relay C(sp3 )−H azidation
Science, 2022, 376, 869-874
DOI: 10.1126/science.abj2830Keywords: Computational chemistry, Enzyme design, Metalloproteins, Predictive Chemistry, Reaction mechanisms
Anja Knorrscheidt, Jordi Soler, Nicole Hünecke, Pascal Püllmann, Marc Garcia-Borràs, and Martin J. Weissenborn
Accessing Chemo- and Regioselective Benzylic and Aromatic Oxidations by Protein Engineering of an Unspecific Peroxygenase
ACS Catal., 2021, 11, 7327-7338
DOI: 10.1021/acscatal.1c00847Keywords: Catalysis, Computational chemistry, Enzyme design, Metalloproteins, Oxidation
Manfred T. Reetz, Marc Garcia-Borràs
The Unexplored Importance of Fleeting Chiral Intermediates in Enzyme-Catalyzed Reactions
J. Am. Chem. Soc., 2021, 143, 14939-14950
DOI: 10.1021/jacs.1c04551Keywords: Catalysis, Enzyme design, Metalloproteins, Reaction mechanisms
Marc Garcia-Borràs, S.B.Jennifer Kan, RussellD. Lewis, Allison Tang, Gonzalo Jimenez-Osés, FrancesH. Arnold, K.N. Houk
Origin and Control of Chemoselectivity in Cytochromec Catalyzed Carbene Transfer into Si–H and N–H bonds
J. Am. Chem. Soc., 2021, 143, 7114-7123
DOI: 10.1021/jacs.1c02146Keywords: Catalysis, Computational chemistry, Enzyme design, Metalloproteins
Zhen Liu, Carla Calvó-Tusell, AndrewZ. Zhou, Kai Chen, Marc Garcia-Borràs, Frances H. Arnold
Dual-function enzyme catalysis for enantioselective carbon–nitrogen bond formation
Nat. Chem., 2021, 13, 1166-1172
DOI: 10.1038/s41557-021-00794-zKeywords: Catalysis, Computational chemistry, Enzyme design, Metalloproteins
Kristína Urbanová, Inmaculada Ramírez-Macías, Rubén Martín-Escolano, María Rosales, Olaf Cussó, Joan Serrano, Anna Company, Manuel Sánchez-Moreno, Miquel Costas, Xavi Ribas, Clotilde Marín
Effective Tetradentate Compound Complexes against Leishmania spp. that Act on Critical Enzymatic Pathways of These Parasites
Molecules, 2019, 24, 134-
DOI: 10.3390/molecules24010134Keywords: Catalysis, High-valent metal complexes, Metalloproteins, Oxidation
Daniel F.A.R. Dourado, Marcel Swart, Alexandra Teresa Pires Carvalho
Why the flavin dinucleotide cofactor needs to be covalently linked to Complex II of the electron transport chain for conversion of FADH2 to FAD
Chem. Eur. J., 2018, 24, 5246-5252
DOI: 10.1002/chem.201704622Keywords: Computational chemistry, Metalloproteins, Electron and energy transfer, Reaction mechanisms, Molecular Dynamics simulations