Results: 10
Michele Tomasini, Michal Szostak, Albert Poater
Machine Learning in Predicting Activation Barrier Energy of C=N Bond Rotation in Amides
Asian J Org Chem, 2025, [], ASAP-
DOI: 10.1002/ajoc.202400749OpenAccess: LinkKeywords: Computational chemistry, Machine learning, Organometallics, Predictive Chemistry, Reaction mechanisms
Zhen Cao, Laura Falivene, Albert Poater, Bholanath Maity, Ziyung Zhang, Gentoku Takasao, SadeedBin Sayed, Andrea Petta, Giovanni Talarico, Romina Oliva, Luigi Cavallo
COBRA web application to benchmark linear regression models for catalyst optimization with few-entry datasets
Cell Reports Physical Science, 2025, 6, 102348-
DOI: 10.1016/j.xcrp.2024.102348OpenAccess: –Keywords: Chemical bonding, Computational chemistry, Joint Exp-Comp, Machine learning, Predictive Chemistry
Michele Tomasini, Maria Voccia, Lucia Caporaso, Michal Szostak, Albert Poater
Tuning the steric hindrance of alkylamines: a predictive model of steric editing of planar amines
Chem. Sci., 2024, 15, 13405-13414
DOI: 10.1039/D4SC03873HOpenAccess: LinkKeywords: Chemical bonding, Computational chemistry, Cross-coupling reactions, Machine learning, Organometallics
Sílvia Escayola, Naeimeh Bahri-Laleh, Albert Poater
%V Bur index and steric maps: from predictive catalysis to machine learning
Chem. Soc. Rev., 2024, 53, 853-882
DOI: 10.1039/D3CS00725AOpenAccess: –Keywords: Chemical bonding, Computational chemistry, Machine learning, Predictive Chemistry, Sustainable Catalysis
Sergei F. Vyboishchikov
Solvation Enthalpies and Free Energies for Organic Solvents through a Dense Neural Network: A Generalized-Born Approach
Liquids, 2024, 4, 525-538
DOI: 10.3390/liquids4030030OpenAccess: LinkKeywords: Machine learning, Method development
Sergei F. Vyboishchikov
Dense Neural Network for Calculating Solvation Free Energies from Electronegativity-Equalization Atomic Charges
J. Chem. Inf. Model., 2023, 63, 6283-6292
DOI: 10.1021/acs.jcim.3c00922OpenAccess: –Keywords: Machine learning, Method development
Elizaveta F. Petrusevich, Manon H. E. Bousquet, Borys Ośmiałowski, Denis Jacquemin, Josep M. Luis, Robert Zaleśny
Cost-Effective Simulations of Vibrationally-Resolved Absorption Spectra of Fluorophores with Machine-Learning-Based Inhomogeneous Broadening
J. Chem. Theory Comput., 2023, 19, 2304-2315
DOI: 10.1021/acs.jctc.2c01285OpenAccess: LinkKeywords: Computational chemistry, Excited states, Machine learning, Method development, Spectroscopy
Sergei F. Vyboishchikov
Predicting Solvation Free Energies Using Electronegativity-Equalization Atomic Charges and a Dense Neural Network: A Generalized-Born Approach
J. Chem. Theory Comput., 2023, 19, 8340-8350
DOI: 10.1021/acs.jctc.3c00858OpenAccess: –Keywords: Machine learning, Method development
Roger Monreal-Corona, Anna Pla-Quintana, Albert Poater
Predictive catalysis: a valuable step towards machine learning
Trends in Chemistry, 2023, 5, 935-946
DOI: 10.1016/j.trechm.2023.10.005OpenAccess: –Keywords: Chemical bonding, Machine learning, Predictive Chemistry, Reaction mechanisms, Sustainable Catalysis
Daniel Bosch, Jun Wang, Lluís Blancafort
Fingerprint-based deep neural networks can model thermodynamic and optical properties of eumelanin DHI dimers
Chem. Sci., 2022, 13, 8942-8946
DOI: 10.1039/D2SC02461FOpenAccess: LinkKeywords: Computational chemistry, Density Functional Theory, Excited states, Machine learning, Melanin