Results: 13
Miguel Martinez‐Fernandez, MdBin Yeamin, David Dalmau, Jorge J. Carbó, Albert Poater, Juan V. Alegre‐Requena
Data‐Driven Analysis of Ni‐Catalyzed Semihydrogenations of Alkynes
Adv Synth Catal, 2025, [], ASAP-
DOI: 10.1002/adsc.202401444OpenAccess: –Keywords: Computational chemistry, Homogeneous catalysis, Machine learning, Predictive Chemistry, Reaction mechanisms
Michele Tomasini, Michal Szostak, Albert Poater
Machine Learning in Predicting Activation Barrier Energy of C=N Bond Rotation in Amides
Asian J Org Chem, 2025, 14, e202400749
DOI: 10.1002/ajoc.202400749OpenAccess: LinkKeywords: Computational chemistry, Machine learning, Organometallics, Predictive Chemistry, Reaction mechanisms
Zhen Cao, Laura Falivene, Albert Poater, Bholanath Maity, Ziyung Zhang, Gentoku Takasao, SadeedBin Sayed, Andrea Petta, Giovanni Talarico, Romina Oliva, Luigi Cavallo
COBRA web application to benchmark linear regression models for catalyst optimization with few-entry datasets
Cell Reports Physical Science, 2025, 6, 102348-
DOI: 10.1016/j.xcrp.2024.102348OpenAccess: –Keywords: Chemical bonding, Computational chemistry, Joint Exp-Comp, Machine learning, Predictive Chemistry
Sergei F. Vyboishchikov
Atomic Neural Network for Calculation of Solvation Free Energies in Organic Solvents
J Comput Chem, 2025, 46, e70104
DOI: 10.1002/jcc.70104OpenAccess: –Keywords: Machine learning, Method development
Evert Jan Baerends, Nestor F. Aguirre, Nick D. Austin, Jochen Autschbach, F. Matthias Bickelhaupt, Rosa Bulo, Chiara Cappelli, Adri C. T. van Duin, Franco Egidi, Célia Fonseca Guerra, Arno Förster, Mirko Franchini, Theodorus P. M. Goumans, Thomas Heine, Matti Hellström, Christoph R. Jacob, Lasse Jensen, Mykhaylo Krykunov, Erik van Lenthe, Artur Michalak, Mariusz M. Mitoraj, Johannes Neugebauer, Valentin Paul Nicu, Pier Philipsen, Harry Ramanantoanina, Robert Rüger, Georg Schreckenbach, Mauro Stener, Marcel Swart, Jos M. Thijssen, Tomás Trnka, Lucas Visscher, Alexei Yakovlev, Stan van Gisbergen
The Amsterdam Modeling Suite
J. Chem. Phys., 2025, 162, 162501
DOI: 10.1063/5.0258496OpenAccess: LinkKeywords: Computational chemistry, Machine learning, Method development, Spectroscopy
Michele Tomasini, Maria Voccia, Lucia Caporaso, Michal Szostak, Albert Poater
Tuning the steric hindrance of alkylamines: a predictive model of steric editing of planar amines
Chem. Sci., 2024, 15, 13405-13414
DOI: 10.1039/D4SC03873HOpenAccess: LinkKeywords: Chemical bonding, Computational chemistry, Cross-coupling reactions, Machine learning, Organometallics
Sílvia Escayola, Naeimeh Bahri-Laleh, Albert Poater
%V Bur index and steric maps: from predictive catalysis to machine learning
Chem. Soc. Rev., 2024, 53, 853-882
DOI: 10.1039/D3CS00725AOpenAccess: –Keywords: Chemical bonding, Computational chemistry, Machine learning, Predictive Chemistry, Sustainable Catalysis
Sergei F. Vyboishchikov
Solvation Enthalpies and Free Energies for Organic Solvents through a Dense Neural Network: A Generalized-Born Approach
Liquids, 2024, 4, 525-538
DOI: 10.3390/liquids4030030OpenAccess: LinkKeywords: Machine learning, Method development
Sergei F. Vyboishchikov
Dense Neural Network for Calculating Solvation Free Energies from Electronegativity-Equalization Atomic Charges
J. Chem. Inf. Model., 2023, 63, 6283-6292
DOI: 10.1021/acs.jcim.3c00922OpenAccess: –Keywords: Machine learning, Method development
Elizaveta F. Petrusevich, Manon H. E. Bousquet, Borys Ośmiałowski, Denis Jacquemin, Josep M. Luis, Robert Zaleśny
Cost-Effective Simulations of Vibrationally-Resolved Absorption Spectra of Fluorophores with Machine-Learning-Based Inhomogeneous Broadening
J. Chem. Theory Comput., 2023, 19, 2304-2315
DOI: 10.1021/acs.jctc.2c01285OpenAccess: LinkKeywords: Computational chemistry, Excited states, Machine learning, Method development, Spectroscopy