Results: 222
Zahra Noori, Miquel Solà, Clara Viñas, Francesc Teixidor, Jordi Poater
Unraveling aromaticity: the dual worlds of pyrazole, pyrazoline, and 3D carborane
Beilstein J. Org. Chem., 2025, 21, 412-420
DOI: 10.3762/bjoc.21.29OpenAccess: LinkKeywords: Aromaticity, Chemical bonding, Nanomaterials
Zhen Cao, Laura Falivene, Albert Poater, Bholanath Maity, Ziyung Zhang, Gentoku Takasao, SadeedBin Sayed, Andrea Petta, Giovanni Talarico, Romina Oliva, Luigi Cavallo
COBRA web application to benchmark linear regression models for catalyst optimization with few-entry datasets
Cell Reports Physical Science, 2025, 6, 102348-
DOI: 10.1016/j.xcrp.2024.102348OpenAccess: –Keywords: Chemical bonding, Computational chemistry, Joint Exp-Comp, Machine learning, Predictive Chemistry
Louis Van Nyvel, Mercedes Alonso, Miquel Solà
Effect of size, charge, and spin state on Hückel and Baird aromaticity in [N ]annulenes
Chem. Sci., 2025, [], ASAP-
DOI: 10.1039/D4SC08225GOpenAccess: LinkKeywords: Aromaticity, Chemical bonding, Excited states, Spin states
Roger Monreal-Corona, Nicolas Joly, Sylvain Gaillard, Jean-Luc Renaud, Marc Valero, Enric Mayolas, Anna Pla-Quintana, Albert Poater
Mechanism and optimization of ruthenium-catalyzed oxalamide synthesis using DFT
Dalton Trans., 2025, 54, 1655-1664
DOI: 10.1039/D4DT03182BOpenAccess: LinkKeywords: Chemical bonding, Computational chemistry, Predictive Chemistry, Reaction mechanisms
Gerrit-Jan Linker, Marcel Swart, PietTh. van Duijnen
Atomic Radii Derived From the Expectation Value r4$$ \left\langle {r}^4\right\rangle $$
Int J of Quantum Chemistry, 2025, 125, ASAP-
DOI: 10.1002/qua.70032OpenAccess: LinkKeywords: Chemical bonding, Computational chemistry
Ya-Shan Huang, Hong-Lei Xu, Wen-Juan Tian, Zi-Sheng Li, Sílvia Escayola, Miquel Solà, Alvaro Muñoz-Castro, Zhong-Ming Sun
[Co3 @Ge6 Sn18 ]5– : A Giant σ-Aromatic Cluster Analogous to H3 + and Li3 +
J. Am. Chem. Soc., 2025, [], ASAP-
DOI: 10.1021/jacs.4c16401OpenAccess: –Keywords: Aromaticity, Chemical bonding, Joint Exp-Comp, Nanocages
Ricardo Pino-Rios, Rodrigo Báez-Grez, DariuszW. Szczepanik, Miquel Solà
Reply to the ‘Comment on “Designing potentially singlet fission materials with an anti-Kasha behaviour”’ by K. Jindal, A. Majumdar and R. Ramakrishnan,Phys. Chem. Chem. Phys. , 2025,27 , DOI: 10.1039/D4CP02863E
Phys. Chem. Chem. Phys., 2025, 27, 4973-4975
DOI: 10.1039/d4cp04691aOpenAccess: LinkKeywords: Aromaticity, Chemical bonding, Excited states, Photovoltaic materials
Ricardo Pino-Rios, Rodrigo Báe-Grez, DariuszW. Szczepanik, Miquel Solà
Correction: Designing potentially singlet fission materials with an anti-Kasha behaviour
Phys. Chem. Chem. Phys., 2025, 27, 4976-4976
DOI: 10.1039/D5CP90023AOpenAccess: LinkKeywords: Aromaticity, Chemical bonding, Excited states, Photovoltaic materials
Komal Jindal, Atreyee Majumdar, Raghunathan Ramakrishnan
Comment on “Designing potentially singlet fission materials with an anti-Kasha behaviour” by R. Pino-Rios, R. Báez-Grez, D. W. Szczepanik, and M. Solá,Phys. Chem. Chem. Phys. , 2024,26 , 15386
Phys. Chem. Chem. Phys., 2025, [], ASAP-
DOI: 10.1039/D4CP02863EOpenAccess: –Keywords: Aromaticity, Chemical bonding, Excited states, Photovoltaic materials, Spin states
Almudena Inchausti, Rosa Mollfulleda, Marcel Swart, Josefina Perles, Santiago Herrero, ValentínG. Baonza, Mercedes Taravillo, Álvaro Lobato
Torsion Effects Beyond the δ Bond and the Role of π Metal‐Ligand Interactions
Advanced Science, 2024, 11, 2401293
DOI: 10.1002/advs.202401293OpenAccess: LinkKeywords: Chemical bonding, Homogeneous catalysis, Spectroscopy