Results: 6
Miguel Martinez‐Fernandez, MdBin Yeamin, David Dalmau, Jorge J. Carbó, Albert Poater, Juan V. Alegre‐Requena
Data‐Driven Analysis of Ni‐Catalyzed Semihydrogenations of Alkynes
Adv Synth Catal, 2025, [], ASAP-
DOI: 10.1002/adsc.202401444OpenAccess: –Keywords: Computational chemistry, Homogeneous catalysis, Machine learning, Predictive Chemistry, Reaction mechanisms
Michele Tomasini, Michal Szostak, Albert Poater
Machine Learning in Predicting Activation Barrier Energy of C=N Bond Rotation in Amides
Asian J Org Chem, 2025, 14, e202400749
DOI: 10.1002/ajoc.202400749OpenAccess: LinkKeywords: Computational chemistry, Machine learning, Organometallics, Predictive Chemistry, Reaction mechanisms
Zhen Cao, Laura Falivene, Albert Poater, Bholanath Maity, Ziyung Zhang, Gentoku Takasao, SadeedBin Sayed, Andrea Petta, Giovanni Talarico, Romina Oliva, Luigi Cavallo
COBRA web application to benchmark linear regression models for catalyst optimization with few-entry datasets
Cell Reports Physical Science, 2025, 6, 102348-
DOI: 10.1016/j.xcrp.2024.102348OpenAccess: –Keywords: Chemical bonding, Computational chemistry, Joint Exp-Comp, Machine learning, Predictive Chemistry
Thalía Ortiz-García, Sergio Posada-Pérez, Layla El-Khchin, David Dalmau, JuanV. Alegre-Requena, Miquel Solà, Valerio D’Elia, Albert Poater
Systematic investigation of the role of the epoxides as substrates for CO2 capture in the cycloaddition reaction catalysed by ascorbic acid
Ind. Chem. Mater., 2025, [], ASAP-
DOI: 10.1039/D5IM00037HOpenAccess: LinkKeywords: Cycloaddition, Machine learning, Predictive Chemistry, Reaction mechanisms, Sustainable Catalysis
Sergei F. Vyboishchikov
Atomic Neural Network for Calculation of Solvation Free Energies in Organic Solvents
J Comput Chem, 2025, 46, e70104
DOI: 10.1002/jcc.70104OpenAccess: –Keywords: Machine learning, Method development
Evert Jan Baerends, Nestor F. Aguirre, Nick D. Austin, Jochen Autschbach, F. Matthias Bickelhaupt, Rosa Bulo, Chiara Cappelli, Adri C. T. van Duin, Franco Egidi, Célia Fonseca Guerra, Arno Förster, Mirko Franchini, Theodorus P. M. Goumans, Thomas Heine, Matti Hellström, Christoph R. Jacob, Lasse Jensen, Mykhaylo Krykunov, Erik van Lenthe, Artur Michalak, Mariusz M. Mitoraj, Johannes Neugebauer, Valentin Paul Nicu, Pier Philipsen, Harry Ramanantoanina, Robert Rüger, Georg Schreckenbach, Mauro Stener, Marcel Swart, Jos M. Thijssen, Tomás Trnka, Lucas Visscher, Alexei Yakovlev, Stan van Gisbergen
The Amsterdam Modeling Suite
J. Chem. Phys., 2025, 162, 162501
DOI: 10.1063/5.0258496OpenAccess: LinkKeywords: Computational chemistry, Machine learning, Method development, Spectroscopy