SIDE-BOUND C=O AND C=N BONDS AS COOPERATIVE LIGANDS IN NICKEL CATALYSIS

Dide G. A. Verhoeven, ${ }^{\dagger}$ Alessio Orsino, ${ }^{\dagger}$ Martin Lutz, \ddagger Marc-Etienne Moret,,${ }^{\dagger, *}$
tOrganic Chemistry \& Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
\ddagger Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands e-mail: m.moret@uu.nl

The development of greener and cheaper chemical processes motivates a widespread investigation of complexes of first-row transition metals as potential homogeneous catalysts to replace or, better, improve on traditional systems that are widely based on noble metals. ${ }^{[1]}$ Progress in this area has been intimately related to the development of tailored ligands, such as cooperative ligands that actively participate in chemical reactions. ${ }^{[2]}$

In this contribution, we investigate the use of side-bound $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{N} \pi$-ligands $[3,4,5]$ tethered by phosphine side-arms as cooperative ligands in base-metal catalysis. In particular, a hemilabile $\mathrm{P}(\mathrm{CO}) \mathrm{P}$ ligands afford selective $\mathrm{Ni}(0)$ alkyne cyclotrimerization catalysts (top), and $\mathrm{Ni}(0)$ complexes of $\mathrm{P}(\mathrm{CN}) \mathrm{P}$ ligands activate $\mathrm{Ph}_{2} \mathrm{SiH}_{2}$ over the $\mathrm{C}=\mathrm{N}$ bond and function as olefin hydrosilylation catalysts (bottom). Insights into the mechanism of these transformations are provided by both experiment and computations.

References:

1) Bullock, R. M., Ed. Catalysis Without Precious Metals; Wiley-VCH: Weinheim, 2010
2) van der Vlugt, J. I. Eur. J. Inorg. Chem. 2011, 363
3) Verhoeven, D. G. A.; Moret, M.-E. Dalton Trans. 2016, 45 (40), 15762-15778.
4) Saes, B. W. H.; Verhoeven, D. G. A.; Lutz, M.; Klein Gebbink, R. J. M.; Moret, M.-E. Organometallics 2015, 34, 2710-2713.
5) J. Hou, W. -H. Sun, S. Zhang, H. Ma, Y. Deng, X. Lu, Organometallics, 2006, 25, 236-244.
