Rationalizing the Reactivity of Bimetallic Molecular Catalysts for CO₂ Hydrogenation

Laura Gagliardi Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455, USA gagliard@umn.edu

We have recently reported the heterobimetallic nickel-gallium complex,[1] NiGaL (where L represents the tris(phosphinoamido)amine ligand, [N(o-(NCH₂Pi- Pr_2) C_6H_4)₃]³⁻), which is the most active Ni-based molecular catalyst for CO₂ hydrogenation to date. Understanding the reaction mechanism of this catalytic system and identifying the factors that govern its catalytic activity are important toward designing even more efficient base metal catalysts. I will present the results of a computational study of possible reaction pathways for CO₂ hydrogenation catalyzed by NiGaL. The most favorable pathway for formate production has four elementary steps: (1) H_2 binding to the Ni center, (2) deprotonation of the H_2 adduct, (3) hydride transfer to CO_2 to form formate adduct, and (4) formate release to regenerate NiGaL. The reaction mechanism identified by the calculations agrees well with several key experimental observations. For hydride transfer to CO₂, the free energy of activation was found to depend linearly on the thermodynamic hydricity for a series of bimetallic HM1M2L⁻ complexes. This linear relationship provides a simple and efficient strategy for screening other bimetallic catalysts by predicting the free energies of activation for the hydride-transfer step based on experimental or computed thermodynamic hydricity data, rather than by calculating the entire reaction mechanism. The predicted trends and structure-activity relationships arising from these computational calculations provide tools for the rational design of more efficient catalysts for CO₂ hydrogenation and other hydride transfer processes for which reactive M-H species are generated in the presence of a Lewis base.

[1] Ryan C. Cammarota; Vollmer, M. V.; Xie, J.; Ye, J.; Linehan, J. C.; Burgess, S. A.; Appel, A. M.; Gagliardi, L.; Lu, C. C. *J. Am. Chem. Soc.* **2017**, *139* (40), 14244–14250.

Recipes for Designing Bimetallic Molecular Catalysts for CO₂ Hydrogenation