PRODUCTION AND USAGE OF LIQUID SOLAR FUELS

Shunichi Fukuzumi

Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea, Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan e-mail: fukuzumi@chem.eng.osaka-u.ac.jp

Sustainable and clean energy resources using solar energy are urgently required in order to solve global energy and environmental issues. This lecture focuses on the combination of production of liquid fuels such as formic acid and hydrogen peroxide using solar energy, so called liquid solar fuels rather than gaseous hydrogen, and their use in direct liquid fuel cells.^[1] In particular, photocatalytic production of hydrogen peroxide (H₂O₂) from seawater and dioxygen (O₂) in the air as a liquid solar fuel is combined with its usage in one-compartment H₂O₂ fuel cells.

We have developed a variety of photosynthetic reaction center models composed of organic electron donors and acceptors linked by covalent or non-covalent bonding, which undergo efficient charge separation and slow charge recombination.^[2] The efficient charge-separation step has been successfully combined with the catalytic water reduction step with earth-abundant metal catalysts to develop efficient photocatalytic hydrogen evolution systems.^[3] The photocatalytic oxidation of water with O₂ in the air to produce H₂O₂ has been achieved,^[4-6] together with the development of one-compartment H₂O₂ fuel cells.^[7-9] The photocatalytic oxidation of water with O₂ in the air was found to be enhanced significantly in seawater.^[10] Thus, the combination of the photocatalytic H₂O₂ production from seawater and O₂ using solar energy with one-compartment H₂O₂ fuel cells provides on-site production and usage of H₂O₂ as a more useful and promising liquid solar fuel than H₂.^[10,11] The solar-driven oxidation of H₂O by O₂ to produce H₂O₂ is also combined with catalytic oxidation of benzene by H₂O₂ to produce phenol, when the overall reaction is solar-driven hydroxylation of benzene by O₂, which is the greenest oxidant, with H₂O.^[12,13]

References

- 1) S. Fukuzumi, Joule, 2017, 1, 689.
- 2) S. Fukuzumi, K. Ohkubo, T. Suenobu, Acc. Chem. Res. 2014, 47, 1455.
- 3) S. Fukuzumi, D. Hong, Y. Yamada, J. Phys. Chem. Lett. 2013, 4, 3458.
- 4) S. Kato, J. Jung, T. Suenobu, S. Fukuzumi, Energy Environ. Sci. 2013, 6, 3756.
- 5) K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, ACS Energy Lett. 2016, 1, 913.
- 6) S. Fukuzumi, Y.-M. Lee, W. Nam, Chem-Eur. J. 2018, 24, in press.
- 7) Y. Yamada, S. Yoshida, T. Honda, S. Fukuzumi, Energy Environ. Sci. 2011, 4, 2822.
- 8) Y. Yamada, M. Yoneda, S. Fukuzumi, Energy Environ. Sci. 2015, 8, 1698.
- 9) S. Fukuzumi, Y. Yamada, *ChemElectroChem* **2016**, *3*, 1978.
- 10) K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, Nat. Commun. 2016, 7, 11470.
- 11) S. Fukuzumi, Y.-M. Lee, W. Nam, ChemSusChem, 2017, 10, 4264.
- 12) Y. Aratani, T. Suenobu, Y. Yamada, S. Fukuzumi, Inorg. Chem. 2016, 55, 5780.
- 13) J. W. Han, J. Jung, Y.-M. Lee, W. Nam, S. Fukuzumi, Chem. Sci. 2017, 8, 7119.